Topological spintronics

N. Samarth
Department of Physics, Penn State University, University Park PA 16802 USA

Tetradybite narrow band gap semiconductors (Bi$_2$Te$_3$, Bi$_2$Se$_3$, Sb$_2$Te$_3$, and their alloys) are now known to support topologically protected, two dimensional (2D) helical Dirac fermion surface states characterized by a spin-texture in momentum space [1,2]. Originally predicted by first principles calculations [3], spin- and angle-resolved photoemission spectroscopy firmly demonstrated [4,5] the linear dispersion and the “spin-momentum locking” of the 2D surface states in these three dimensional (3D) “topological insulators.” More recently, the spin-momentum locking has also been measured using electrical transport measurements [6-10]. The spin-momentum locking of 2D helical Dirac states lends itself naturally to spintronic device applications that might exploit efficient spin-charge interconversion. This talk will first present an overview of concepts and experiments that explore the emergence of “topological spintronics,” a potential device technology that exploits the strong spin-orbit coupling in topological insulators for efficiently manipulating the magnetization of a vicinal ferromagnet [11-15]. We will then focus on recent experiments that probe spin-charge interconversion at interfaces between a 3D topological insulator and an insulating ferrimagnet [16], with a particular view toward understanding how the spin Hall conductivity in topological insulators varies with chemical potential [17]. Finally, we address the interesting device possibilities presented by idealized topological insulator/ferromagnetic insulator devices [18] and discuss pathways aimed at testing such proposals.

This work was supported by DARPA and C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA. We also acknowledge partial support from ONR (N00014-15-1-2364) and the 2D Crystal Consortium, an NSF Materials Innovation Platform site (DMR-1539916).

References

14. J. Han et al., arxiv :1703.07470.
15. D. C. Mahindra et al., arxiv :1703.03822